Unit 2: Gases \& Gas Mixtures

- Gas Basics
- What's in Air
- Some Facts About Individual Gases
- How Gases Behave
- Converting Between Depth and Pressure

- Calculating Partial Pressures

Student Performance:

By the end of the lesson you will be able to:

- State the composition of air.
- Describe how gases behave.
- Explain the relationship between pressure and gas volume.
- Describe the solubility of gases.
- Explain what partial pressure is and determine various partial pressures.
- Determine absolute pressure at depth.
- Determine the partial pressure of a gas in a mixture at depth.

Gas Basics

- Matter

- Composition of a gas

- Gas mixtures
- Gas pressure
- Dissolved gases

What's in Air?

- Composition of air
- Oxygen $\left(\mathrm{O}_{2}\right) 0.2095$
- Nitrogen $\left(\mathrm{N}_{2}\right) 0.7808$
- Argon (Ar) 0.00934
- Carbon dioxide (CO_{2}) ~0.00035 (average)
- Others 0.00004

- Simplifying the numbers:
- 21\% oxygen / 79\% nitrogen

Some Facts About Individual Gases

- Oxygen $\left(\mathrm{O}_{2}\right)$
- Nitrogen $\left(\mathrm{N}_{2}\right)$
- Argon (Ar)
- Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$
- Helium (He)
- Neon (Ne)

How Gases Behave

Boyle's Law: Pressure, Volume, and Density

How Gases Behave continued

 The Solubility of Gases
How Gases Behave continued

Dalton's Law: Partial Pressure in Gas Mixtures

Converting Between Depth and Pressure

- Absolute vs. gauge pressure

| DEPTH
 FET | DEPTH |
| :---: | :---: | :---: | :---: |
| METERS | | WAITR

Converting Between Depth and Pressure continued

- Converting by formula
- To find absolute pressure:
P ata $=(D \mathrm{fsw} / 33 \mathrm{fsw} / \mathrm{atm})+1 \mathrm{~atm}$
$=(\mathrm{D} f \boldsymbol{f s}+33 \mathrm{fsw}) / 33 \mathrm{fsw} / \mathrm{atm}$
- To find depth:

D fsw $=(\mathrm{P}$ ata $-1 \mathrm{~atm}) \times 33 \mathrm{fsw} / \mathrm{atm}$

Converting Between Depth and Pressure continued

- Converting by table

Calculating Partial

 Pressures- If you know the absolute pressure:

-The basic formula:

$P_{g}=F_{g} \times P_{\text {total }}$
-Using a graphical figure

Calculating Partial

 Pressures continued- Moving between partial pressure and depth using formulas:
- Depth to partial pressure
- First find the absolute pressure at depth.
- Then find the partial pressure of the component gas at that absolute pressure.
- Partial pressure to depth
- First find the absolute pressure of the gas mixture from the partial pressure and fraction of the component gas.
- Then find the depth for that absolute pressure.

Calculating Partial

Pressures continued

Using a table

Oxygen Partial Pressure (n atmospheres ahsolute) at Depth											
		Air	0.24	0.26	0.28	0.30	0.32	0.34	0.36	0.38	0.40
$\begin{aligned} & \text { Dopth } \\ & \text { (fsw) } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { (msw) } \end{aligned}$										
40	12	0.46	0.53	0.58	0.62	0.66	0.71	0.75	0.80	0.84	0.88
50	15	0.53	0.60	0.65	0.70	0.75	0.80	0.86	0.81	0.96	1.01
60	18	0.59	0.68	0.73	0.79	0.85	0.90	0.96	1.01	1.07	1.13
70	21	0.66	0.75	0.81	0.87	0.94	1.00	1.08	1.12	1.18	1.25
80	24	0.72	0.82	0.89	0.96	1.03	1.10	1.16	1.23	1.30	1.37
90	27	0.78	0.89	0.97	1.04	1.12	1.19	1.27	1.34	1.42	1.49
100	30	0.85	0.97	1.05	1.13	1.21	1.29	1.37	1.45	1.53	1.61
110	33	0.91	1.04	1.13	1.21	1.30	1.39	1.47	1.56	1.64	1.73
120	36	0.97	1.11	1.21	1.30	1.39	1.48	1.58	1.66	1.76	1.85
130	40		1.19	1.28	1.38	1.48	1.58	1.68	1.77	1.88	1.88

End of Unit 2

Gases \& Gas Mixtures

- Gas Basics
- What's in Air
- Some Facts About Individual Gases
- How Gases Behave
- Converting Between Depth and Pressure

Student Performance:

By the end of the lesson you will be able to:

- State the composition of air.
- Describe how gases behave.
- Explain the relationship between pressure and gas volume.
- Describe the solubility of gases.
- Explain what partial pressure is and determine various partial pressures.
- Determine absolute pressure at depth.
- Determine the partial pressure of a gas in a mixture at depth.

