## Unit 2: Gases & Gas Mixtures

- Gas Basics
- What's in Air
- Some Facts About Individual Gases
- How Gases Behave
- Converting Between
  Depth and Pressure
- Calculating Partial Pressures



## **Student Performance:**

By the end of the lesson you will be able to:

- State the composition of air.
- Describe how gases behave.
- Explain the relationship between pressure and gas volume.
- Describe the solubility of gases.
- Explain what partial pressure is and determine various partial pressures.
- Determine absolute pressure at depth.
- Determine the partial pressure of a gas in a mixture at depth.

## **Gas Basics**

- Matter
- Composition of a gas
- Gas mixtures
- Gas pressure
- Dissolved gases

# What's in Air?

#### Composition of air

- Oxygen (O<sub>2</sub>) 0.2095
- Nitrogen (N<sub>2</sub>) 0.7808
- Argon (Ar) 0.00934
- Carbon dioxide (CO<sub>2</sub>)
  ~0.00035 (average)
- Others 0.00004



- Simplifying the numbers:
  - 21% oxygen / 79% nitrogen

# Some Facts About Individual Gases

- Oxygen (O<sub>2</sub>)
- Nitrogen (N<sub>2</sub>)
- Argon (Ar)
- Carbon Dioxide (CO<sub>2</sub>)
- Helium (He)
- Neon (Ne)

## **How Gases Behave**

Boyle's Law: Pressure, Volume, and Density

WORLDWIDE



### How Gases Behave continued

#### Henry's Law: The Solubility of Gases

WORLDWID

**DIVE SAFETY THROUGH EDUCAT** 

Solubility of Gases



1. Equilibrium = 1 ATM



 Non-equilibrium with pressure increased

3. Equilibrium at Increased Pressure



 Non-equilibrium with pressure decreased

## How Gases Behave continued

Dalton's Law: Partial Pressure in Gas Mixtures

WORLDWID

**DIVE SAFETY THROUGH EDUCATIO** 



# **Converting Between Depth and Pressure**

#### Absolute vs. gauge pressure

WORLDWIDE

**DIVE SAFETY THROUGH EDUCATION** 

| DEPTH<br>Fæt | DEPTH<br>METERS | WATER<br>PRESSURE | ABSOLUTE<br>Pressure |  |  |  |  |
|--------------|-----------------|-------------------|----------------------|--|--|--|--|
|              |                 | $\subseteq$       |                      |  |  |  |  |
|              | 0               |                   | 1 ata                |  |  |  |  |
| 89           | 10              | 1 atm             | 2 ata                |  |  |  |  |
| 88           | 20              | 2 atm             | 3 ata                |  |  |  |  |
| 89           | 30              | 3 atm             | 4 ata                |  |  |  |  |
| 132          | 40              | 4 atm             | 5 ata                |  |  |  |  |

## Converting Between Depth and Pressure continued

- Converting by formula
- To find absolute pressure:
  - P ata = (D fsw / 33 fsw/atm) + 1 atm
    - = (D fsw + 33 fsw) / 33 fsw/atm
- To find depth:
  D fsw = (P ata 1 atm) x 33 fsw/atm

## Converting Between Depth and Pressure continued

 Converting by table

WORLDWIDE

**DIVE SAFETY THROUGH EDUCATION** 

| Abso           | lute Pressure at | Depth             |  |  |
|----------------|------------------|-------------------|--|--|
| Depth<br>(fsw) | Depth<br>(msw)   | Pressure<br>(ata) |  |  |
| 0              | 0                | 1                 |  |  |
| 10             | 3                | 1.3               |  |  |
| 20             | 6                | 1.6               |  |  |
| 30             | 9                | 1.9               |  |  |
| 40             | 12               | 1.2               |  |  |
| 50             | 15               | 2.5               |  |  |
| 60             | 18               | 2.9               |  |  |
| 70             | 21               | 3.1               |  |  |
| 80             | 24               | 3.4               |  |  |
| 90             | 27               | 3.7               |  |  |
| 100            | 30               | 4.0               |  |  |
| 110            | 34               | 4.4               |  |  |
| 120            | 37               | 4.7               |  |  |
| 130            | 40               | 5.0               |  |  |
| 140            | 43               | 5.3               |  |  |
| 100            | /10              | E Q               |  |  |

# **Calculating Partial Pressures**

 If you know the absolute pressure: The basic formula:  $P_g = F_g \times P_{total}$ -Using a





# Calculating Partial Pressures continued

 Moving between partial pressure and depth using formulas:

#### Depth to partial pressure

- First find the absolute pressure at depth.
- Then find the partial pressure of the component gas at that absolute pressure.

#### Partial pressure to depth

- First find the absolute pressure of the gas mixture from the partial pressure and fraction of the component gas.
- Then find the depth for that absolute pressure.

# Calculating Partial Pressures continued

#### **Using a table**

| Oxygen Partial Pressure (in atmospheres absolute) at Depth |                |      |      |      |      |      |      |      |      |      |      |
|------------------------------------------------------------|----------------|------|------|------|------|------|------|------|------|------|------|
| FO2                                                        |                | Air  | 0.24 | 0.26 | 0.28 | 0.30 | 0.32 | 0.34 | 0.36 | 0.38 | 0.40 |
| Depth<br>(fsw)                                             | Depth<br>(msw) |      |      |      |      |      |      |      |      |      |      |
| 40                                                         | 12             | 0.46 | 0.53 | 0.58 | 0.62 | 0.66 | 0.71 | 0.75 | 0.80 | 0.84 | 0.88 |
| 50                                                         | 15             | 0.53 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.86 | 0.91 | 0.96 | 1.01 |
| 60                                                         | 18             | 0.59 | 0.68 | 0.73 | 0.79 | 0.85 | 0.90 | 0.96 | 1.01 | 1.07 | 1.13 |
| 70                                                         | 21             | 0.66 | 0.75 | 0.81 | 0.87 | 0.94 | 1.00 | 1.06 | 1.12 | 1.19 | 1.25 |
| 80                                                         | 24             | 0.72 | 0.82 | 0.89 | 0.96 | 1.03 | 1.10 | 1.16 | 1.23 | 1.30 | 1.37 |
| 90                                                         | 27             | 0.78 | 0.89 | 0.97 | 1.04 | 1.12 | 1.19 | 1.27 | 1.34 | 1.42 | 1.49 |
| 100                                                        | 30             | 0.85 | 0.97 | 1.05 | 1.13 | 1.21 | 1.29 | 1.37 | 1.45 | 1.53 | 1.61 |
| 110                                                        | 33             | 0.91 | 1.04 | 1.13 | 1.21 | 1.30 | 1.39 | 1.47 | 1.56 | 1.64 | 1.73 |
| 120                                                        | 36             | 0.97 | 1.11 | 1.21 | 1.30 | 1.39 | 1.48 | 1.58 | 1.66 | 1.76 | 1.85 |
| 130                                                        | 40             |      | 1.19 | 1.28 | 1.38 | 1.48 | 1.58 | 1.68 | 1.77 | 1.88 | 1.98 |

## End of Unit 2 Gases & Gas Mixtures

- Gas Basics
- What's in Air
- Some Facts About
  Individual Gases
- How Gases Behave
- Converting Between
  Depth and Pressure
- Calculating Partial
  Pressures



Unit N Gases  $\infty$ Gas Mixtures

## **Student Performance:**

By the end of the lesson you will be able to:

- State the composition of air.
- Describe how gases behave.
- Explain the relationship between pressure and gas volume.
- Describe the solubility of gases.
- Explain what partial pressure is and determine various partial pressures.
- Determine absolute pressure at depth.
- Determine the partial pressure of a gas in a mixture at depth.